Photoinduced Molecular Transformations. Part 127.1 A New [2 + 2] Photoaddition of 2-Amino-1,4-naphthoquinone with Vinylarenes and the Synthesis of 2,3-Dihydronaphtho[1,2-b]furan-4,5-diones and 2,3-Dihydronaphtho[2,3-b]furan-4,9-diones by β-Scission of Alkoxyl Radicals Generated from the Resulting Photoadducts

Kazuhiro Kobayashi, Akiyoshi Sasaki, Hiroyasu Takeuchi and Hiroshi Suginome*
Organic Synthesis Division, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

Irradiation of 2-amino-1,4-naphthoquinone and excess of vinylarenes such as styrene, its para-substituted derivatives, 2 -vinylpyridine and 4 -vinylpyridine in benzene with a Pyrex-filtered light at room temperature under nitrogen gave 1 -aryl-1,2,2a,8b-tetrahydro-8b-hydroxycyclobuta[a]naphthalene3,4 -diones as a single product in 23-63\% yields, respectively. These cyclobutanols arise from an unprecedented stereo- and regio-selective [2 + 2] photoaddition of an excited enol form of 2-amino-1,4-naphthoquinone with the vinylarenes.

Irradiation of these cyclobutanols in benzene containing excess of mercury(iI) oxide and iodine with Pyrex-filtered light then gave 2-aryl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones and/or 2-aryl-2,3-dihydronaphtho[2,3-b]furan-4,9-diones ($31-73 \%$ yields) arising from a regioselective β-scission of the alkoxyl radicals, followed by intramolecular cyclization of the resulting radical intermediates. The substituent at the para position of the 1 -phenyl group was found to control the ratio of the two types of products: a methoxy group directs the formation of the 4,5-dione exclusively, while the p-cyano group directs the formation of the 4,9-dione exclusively. This considerable dependence of the products on the substituents suggests that at least some part of the formation of the dihydrofuran ring of the 4,5 and/or 4,9-diones takes place from the ionic intermediates arising owing to β-scission. 2,3-Dihydronaphtho[1,2-b]furan-4,5-dione was found to isomerize to 2,3-dihydro[2,3-b]furan-4,9-dione on silica gel.

The [$2+2] \pi$ cycloaddition is one of the most widely studied photoreactions. ${ }^{2}$ Extensive studies have indicated that the photoaddition process is applicable to the construction of a variety of complex organic molecules.

We recently found ${ }^{3}$ that 2,3 -dihydro- $1 H$-benz[f] indole-4,9diones 3 can be formed in one step in $45-82 \%$ yields by an unprecedented [2 +3] type regioselective photoaddition of 2 -amino-1,4-naphthoquinone 1 with various alkenes 2 . The dihydrobenzindolediones 3 , thus formed from 2 -amino-1,4naphthoquinone with vinyl ethers and vinyl acetate, spontaneously lose either alcohol or acetic acid to give $1 H$-benz $[f]$ -indole-4,9-diones 4 in 33-72\% yields, as outlined in Scheme 1.

Scheme 1 Reagents and conditions: i, hv-benzene
In our continuing study to extend the scope of this new type photoaddition reaction, we have found another new type of
photocycloaddition of 2-amino-1,4-naphthoquinone 1 with alkenes: irradiation of 2-amino-1,4-naphthoquinone 1 with vinylarenes 5 in benzene gives cyclobutanols 6 arising from the $[2+2] \pi$ photoaddition outlined in Scheme 2. We further found that the alkoxyl radicals generated from these cyclobutanols 6 result in a regioselective β-scission to give 2,3-dihydro-2-arylnaphtho[1,2-b]furan-4,5-dione 8 and/or 2,3-dihydro-2-arylnaphtho[2,3-b]furan-4,9-dione 9 , depending on the substituent attached to the aryl group.

Since these results involve several new facets concerning the photocycloaddition and reaction of alkoxyl radicals, and are of both mechanistic as well as synthetic interests, we report here on details concerning the results of our investigation.

Results

Electronic Spectrum of 2-Amino-1,4-naphthoquinone 1.-The electronic spectra of 1,4 -naphthoquinone 1 and a large number of its substituted derivatives have been studied by Scheuer and collaborators ${ }^{4}$ in connection with a structural elucidation of echinoderm pigments. They assigned four absorption bands in the ultraviolet and visible regions in the spectra of $1,4-$ naphthoquinones unsubstituted in the benzene ring to the benzenoid and quinoid electron-transfer bands.

The electronic spectra of 2 -amino-1,4-naphthoquinone 1 in two solvents are shown in Table 1, together with data concerning 1,4-naphthoquinone by Scheuer. ${ }^{4}$ A comparison of these spectral data has indicated that although the two benzenoid bands of 1,4 -naphthoquinone are relatively independent of substitution by the 2 -amino group, the quinoid band of 1,4-naphthoquinone at $\lambda 257 \mathrm{~nm}$ caused an appreciable bathochromic shift by the amino group substituted at the 2 position, producing a new band at $\lambda 414 \mathrm{~nm}$.

The present $[2+2]$ photoaddition was undertaken by

Scheme 2 Reagents and conditions: i, benzene- $h v$; ii, $\mathrm{HgO}-\mathrm{I}_{2}$, benzene; iii, $h v$

Table 1 Electronic absorption spectra of 1,4-naphthoquinones

	Solvent	Absorption bands: $\lambda_{\text {max }}(\varepsilon)$			
		Benzenoid electron transfer band	Quinoid electron transfer band	Benzenoid electron transfer band	Quinoid electron transfer band
1,4-Naphthoquinone ${ }^{\text {a }}$	A	245 (22 100)	257sh (13100)	335 (3040)	
1,4Naphthoquinone	A	251 (23 450)			
2-Amino-1,4-naphthoquinone 1	A	256 (23 300)	287 (15 500)	335 (3500)	414 (3100)
2-Amino-1,4-naphtoquinone 1	A	263 (23 800)			
2-Amino-1,4-naphthoquinone 1	B	$\begin{aligned} & 259(22200) \\ & 267(25300) \end{aligned}$	293sh (10 600)	330 (3300)	399 (3500)

${ }^{a}$ Data from ref. 4. A, chloroform; B, 3\% ethanol-cyclohexane.

Table 2 Photoreactions between 2-amino-1,4-naphthoquinone and vinylarenes ${ }^{a}$

Vinylarenes				
Ar	R	Reaction time/h	Yield (\%) of $\mathbf{6}^{\text {b }}$	
Ph	H	2	65	
$p-\mathrm{MePh}$	H	2	56	
$p-\mathrm{ClPh}$	H	3	58	
$p-\mathrm{MeOPh}$	H	2.5	53	
$p-\mathrm{NCPh}$	H	24	49	
Ph	Me	2	$23^{\text {c.d }}$	
2-Py	H	5	64	
4-Py	H	20	23	

${ }^{a}$ The reactions were carried out in the molar ratio of 1-vinylarene 1:520. ${ }^{b}$ Isolated yields. ${ }^{\text {c }}$ The corresponding indolequinone derivative 7 was obtained in 45% yield. ${ }^{d}$ A mixture of stereoisomers.
irradiating the absorption bands of wavelengths longer than 300 nm .

Stereo- and Regio-selective [2 + 2] Photoadditions of 2-Amino-1,4-naphthoquinone 1 with Vinylarenes (Scheme 2).Irradiation of 2-amino-1,4-naphthoquinone 1 and excess of styrene 5a (5 equiv.) in benzene through a Pyrex-filter with a 500 W high-pressure mercury arc at room temperature under nitrogen for 2 h , followed by purification of the resulting product by PLC gave a crystalline single compound 6a in 65% yield. High-resolution mass spectrometry indicated that it has a molecular formula of $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{3}$, indicating a loss of the NH_{2} group in the photoaddition. The IR spectrum exhibited a series of bands at $v_{\text {max }} 3450,1765$ and $1687 \mathrm{~cm}^{-1}$ assignable to the OH and naphthalene-3,4-dione groups. These results indicate the structure to be $1,2,2 \mathrm{a}, 8 \mathrm{~b}$-tetrahydro- 8 b -hydroxy-1phenylcyclobuta $[a]$ naphthalene-3,4-dione 6a. The ${ }^{1} \mathrm{H}$ NMR
spectrum exhibited four signals at $\delta 2.38$ (1 H , ddd), 2.70 ($1 \mathrm{H}, \mathrm{ddd}$), $3.34(1 \mathrm{H}, \mathrm{dd})$ and $3.89(1 \mathrm{H}, \mathrm{dd})$. Their coupling constants enabled us to assign them to the $2-\mathrm{H}_{\text {endo }}, 2-\mathrm{H}_{\text {exo }}$, $1-\mathrm{H}$ and $2 \mathrm{a}-\mathrm{H}$ attached to the cyclobutane ring, respectively (see Experimental section for further data). An NOE study proved that protons $2-\mathrm{H}_{\text {endo }}$ and $1-\mathrm{H}$ as well as protons $2-\mathrm{H}_{\text {exo }}$ and $2 \mathrm{a}-\mathrm{H}$ are cis oriented. Since no isomerization of the proton attached to C-2a of cyclobutanol 5a took place upon being treated with a base, the cyclobutane and 6 -membered rings should be cis fused. The hydroxy group attached to C-8b and the phenyl group attached to $\mathrm{C}-1$ should, thus, be oriented cis. It is remarkable that no stereo- and regio-isomers were formed in this photoaddition.

Photoadditions of aminoquinone 1 with a variety of vinylarenes under the above-mentioned conditions were carried out. The vinylarenes $5 \mathbf{a}-\mathrm{h}$ used for this photoaddition are p-methyl, p-chloro-, p-methoxy-, p-cyano, and α-methyl-styrenes, and 2 vinylpyridine and 4 -vinylpyridines. Table 2 summarizes the results of the photoadditions. Cyclobutanols 6 arising from regio- and stereo-selective $[2+2]$ photoaddition were obtained in fair to good yields as a single product in all of the photoreactions with one exception: the photoaddition of aminonapththoquinone 1 with α-methylstyrene gave a mixture of cis and trans cyclobutanols $6 \boldsymbol{f}$ as well as 2,3 -dihydro- $1 H$-benz $[f]$ -indole-4,9-dione $7(45 \%){ }^{3}$

The stereochemistries of cyclobutanols $\mathbf{6 a - e}, \mathbf{6 g}$ and $\mathbf{6 h}$ were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy as in the case of cyclobutanol 6a.

The Formations of 2-Aryl-2,3-dihydronaphtho[1,2-b] furan-4,5-diones 8 and 2-Aryl-2,3-dihydronaphtho[2,3-b] furan-4,9dione 9 by β-Scission of the Alkoxyl Radicals Generated from Cyclobutanols 6 (Scheme 2).-As part of our program to explore the potential of the β-scission of alkoxyl radicals for organic synthesis, ${ }^{5}$ we have investigated applications of the regioselective opening of cyclobutanyloxyl radicals generated from

Table 3 The formation of furonaphthoquinone derivatives 8 and 9

$\mathbf{2}$	Yield $(\%)$ of $\mathbf{8}^{a}$	Yield (\%) of $\mathbf{9}^{a}$	$\mathbf{8 : 9}$
\mathbf{a}	28	45^{b}	$38: 62$
\mathbf{b}	26	26	$50: 50$
\mathbf{c}	29	29	$76: 24$
\mathbf{d}	70	0	$100: 0$
\mathbf{e}	0	40	$0: 100$
\mathbf{f}	23	8	$75: 25$

${ }^{a}$ Isolated yields. ${ }^{b}$ Ref. 4.
cyclobutanols, obtainable by $[2+2] \pi$ cycloaddition, to organic synthesis. ${ }^{5 b, i, m, o, r . v . w}$ We found that when the alkoxyl radicals 10 , obtained by [$2+2$] photoaddition of 4 -hydroxycoumarin as an enolized 1,3 -diketone to various acyclic and cyclic alkenes, a regioselective β-scission took place to afford a fused furan ring arising from an intramolecular combination of a carbonyl oxygen and a carbon-centred radical generated from β-scission. Synthesis of a number of new furocoumarins 11 and furochromones 12 was achieved by this new process ${ }^{5 o}$ (Scheme 3).
An extension of the reaction of the coumarin series to the quinolone series has subsequently shown that the cyclobutanols 13 derived from a $[2+2]$ photocycloaddition between 4-hydroxy-2-quinolone and various types of olefins gave 3,4 -furo-2-quinolone 14 and/or 2,3-furo-4-quinolones 15 by similar insertion of oxygen atom to the ring when the alkoxyl radicals were generated from the cyclobutanols under similar conditions ${ }^{5 r}$ (Scheme 3).

Scheme 3 Reagents and conditions: i, $\mathrm{I}_{2} \mathrm{O}$-benzene; ii, $h v$
We have conceived that application of this reaction of alkoxyl radical to the cyclobutanols $\mathbf{6 a - h}$ obtained by the new [2 +2] photoaddition may prove the generality of the reaction and widen the scope of this selective oxygen insertion to the cyclobutane rings. We report here the results in full.
Irradiation of cyclobutanol $\mathbf{6 a}$ in benzene containing mercury(II) oxide and iodine (each 3 equiv.) in a Pyrex vessel with a 100 W high-pressure mercury arc under a nitrogen atmosphere for 4 h gave a mixture of products. This product mixture was subjected to PLC to give two crystalline products, 8a and 9a, in 28 and 45% yields. The molecular formula of product 8 a was found to be $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{3}$ by high-resolution mass spectrometry. The IR spectrum exhibited a series of bands at $v_{\text {max }} 1700,1652,1620,1521$ and $1573 \mathrm{~cm}^{-1}$ assignable to a orthoquinone structure. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited three one-proton signals (each double doublet) at $\delta 3.05$, 3.62 and 6.06. Their chemical shifts and coupling constants indicated that these signals are due to protons attached to an α-phenyldihydrofuran structure. The EI mass spectrum exhibited a parent ion at $m / z 104$, assignable to a styrene fragment. These spectral results, in conjunction with possible reaction paths involving β-scission of the alkoxyl radical generated from the cyclobutanol hypoiodite, suggest that the structure of product 8a is 2,3-dihydro-2-phenylnaphtho[1,2$b]$ furan-4,5-dione 8 a.

Product 9a was identical in every respect to 2,3-dihydro-2-phenylnaphtho[2,3-b]furan-4,9-dione 9a, a product due to a [2 +3] photoaddition of 2-hydroxynaphtho-1,4-dione with styrene ${ }^{6}$ (Scheme 2). All other cyclobutanols 6b-f were then transformed into the corresponding hypoiodites and subjected to photolysis under conditions similar to the case of cyclobutanol 6a. The formation of furonaphthoquinones from cyclobutanols 6b-f was found to be completely general; photolysis gave them in combined yields of $31-73 \%$ yields. The yields of furo-o-naphthoquinone and furo-p-naphthoquinone formed and their ratios are summarized in Table 3. A remarkable feature is the ratio of the two types of products, 2,3-dihydronaphtho[1,2-b]furan-4,5-dione and 2,3-dihydronaphtho $[2,3-b]$ furan-4,9-dione; the substituent at the para position of the 1-phenyl group has an appreciable effect on the ratio of the two types of products. Thus, an electron-donating p-methoxy group directs the formation of an angular-type furoquinone exclusively, while an electron-attracting p-cyano group produces the linear-type furoquinone exclusively.

Some natural products having 2,3-dihydronaphtho[1,2-b]-furan-4,5-dione structures such as dunnione, 2,3-dihydro-2,3,3-trimethylnaphtho[1,2-b]furan-4,5-dione and its derivatives have been found and their synthesis has been reported. ${ }^{7}$

Isomerization of 2,3-Dihydro-2-(4-methoxyphenyl)naphtho-[1,2-b] furan-4,5-dione 8d into 2,3-Dihydro-2-(4-methoxyphen$y l$)naphtho[2,3-b] furan-4,9-dione 9d.--We found that 2,3-dihydronaphtho [1,2-b]furan-4,5-dione 8d was completely isomerized during PLC (silica gel; ethyl acetate-hexane, 1:3) into 2,3-dihydronaphtho[2,3-b]furan-4,9-dione 9d. The isomerization path which takes places on the surface of silica gel is outlined in Scheme 4.

Scheme 4

Discussion

The above-mentioned experiments have established that irradiation of 2-amino-1,4-naphthoquinone 1 with vinylarenes 5 in benzene results in an almost exclusive formation of $[2+2]$ photocycloadducts 6 derived from a formal [2 +2] cycloaddition of the enol form of the quinone with vinylarenes, and
that the formation of the cyclobutanol adducts are highly regio- and stereo-selective. This result is in contrast to that obtained regarding the photoaddition of 2-amino-1,4-naphthoquinone 1 with alkenes 2 , where, 2,3-dihydro-1 H-benz[$f]$ -indole-4,9-diones 3 arising from a [2+3] type regioselective photoaddition are exclusive products ${ }^{3}$ (Scheme 1).
One of the probable gross reaction pathways of the photoaddition leading to the cyclobutanols $\mathbf{6 a - h}$ is outlined in Scheme 5 . The electronic absorption spectrum of 2-amino-1,4-naphthoquinone 1 indicates that no orthoquinone form of the quinone exists in solution. Irradiation of quinone 1 in benzene, however, may well generate tautomeric excited species \mathbf{A} and \mathbf{A}^{\prime}.

Scheme 5
These excited tautomers, \mathbf{A} and \mathbf{A}^{\prime}, may then form a biradical B and/or C via exciplex(es) with vinylarenes. The observed regioselectivity in the photoaddition is a clear indication of the involvement of a biradical intermediate, ${ }^{2}$ such as C. The preferred formation of [2 +2] photoadducts in the photoaddition of 2-amino-1,4-naphthoquinone 1 with vinylarenes can probably be understood by assuming the formation of an exciplex between the excited tautomer \mathbf{A}^{\prime} and vinylarenes, leading to persistent biradicals \mathbf{C} in preference to the formation of an exciplex of an excited tautomer \mathbf{A} with vinylarenes, leading to a biradical \mathbf{B}. The preferential formation of the exciplex between \mathbf{A}^{\prime} and vinylarenes is probably facilitated by an attractive interaction ${ }^{8}$ between \mathbf{A}^{\prime} and an aryl group of vinylarenes in an appropriate geometry as well as a hydrogen bonding ${ }^{9}$ between a hydroxy group of \mathbf{A}^{\prime} and a π electron of the aryl group of vinylarenes.

As already mentioned, the hydroxy group attached to $\mathrm{C}-8 \mathrm{~b}$ and the aryl group attached to the C-1 in all the $[2+2]$ photoadducts 6a-h are oriented cis. The hydrogen bonding may direct the observed cis orientation of the two groups.

The aforementioned experiments have also established that the generation of alkoxyl radicals from the cyclobutanol adducts 6 resulted in a regioselective β-scission of the cyclobutane ring to give 2,3 -dihydronaphtho $[1,2-b]$ furan-4,5-diones

Scheme 6

8 and/or 2,3-dihydronaphtho[2,3-b]furan-4,9-diones 9, depending on the substituents attached to the aryl group of the vinylarenes.

The paths from the cyclobutanol hypoiodites \mathbf{E} to 2,3-dihydronaphtho[1,2-b]furan-4,5-diones $\mathbf{8}$ are outlined in Scheme 6. They are essentially the same as those that we have already proposed regarding the formation of furocoumarins, ${ }^{50}$ furoquinolines ${ }^{5 r}$ from cyclobutanyloxyl radicals generated from [2 +2] photoadducts of 4-hydroxycoumarin and 4-hydroxy-2-quinolone with various alkenes; photolysis of the hypoiodites \mathbf{E} generates alkoxyl radicals \mathbf{F} which regioselectively cleave to give a carbon-centred radical G. Successive ionic ($\mathbf{J} \rightleftarrows \mathbf{K} \rightarrow \mathbf{8}$) or radical $(\mathbf{H} \rightarrow \mathbf{I} \rightarrow \mathbf{8}$) cyclization leads to the observed dihydronaphthofuran-4,5-diones 8. A similar process leads to the isomeric 4,9-diones 9 .

A remarkable result concerning this β-scission of the alkoxyl radicals is the effect of the substituent in the benzene ring of the cyclobutanols; it determines whether the β-scission reaction leads to naphthofuran-4,5-diones 8 or 4,9 -diones 9 . This considerable dependence of the products on the substituents suggests that at least some part of the formation of the O-C bond leading to cyclic ethers $\mathbf{8}$ and 9 takes place due to an ionic intermediate; the carbon-centred radical \mathbf{G} generated from the β-scission may be rapidly oxidized to give a carbocation J. It then undergoes cyclization to give ionic cyclic intermediates which lose protons to give product $\mathbf{8}(\mathbf{G} \rightarrow \mathrm{J} \rightarrow 8)$.

We have already demonstrated the utility of the regioselective β-scission of alkoxyl radicals as being a versatile and powerful strategy in organic synthesis. ${ }^{5}$ We have thus reported on a new ring expansion, and the synthesis of heterosteroids, mediumsized lactones, macrolides, phthalides, lignanes, furocoumarins, furochromones, and furoquinolinones etc. through photolysis of the hypoiodites of cycloalkanols including cyclobutanols and lactols. ${ }^{5}$

The reactions described in this paper may also have some potential utility for organic molecular transformations.

Experimental

General Method.-Regarding the instruments used and a description of the general photolysis procedure, see the previous papers ${ }^{50 . r}$ of this series. Commercially available vinylarenes were used for the photoaddition without further purification. J-Values are in Hz .
(\pm)-($1 \times, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-1,2,2 \mathrm{a}, 8 \mathrm{~b}-T e$ trahydro-8b-hydroxy-1-phenyl-cyclobuta[a]naphthalene-3,4-dione 5a.-A solution of 1 (56 mg , $0.32 \mathrm{mmol})$ and styrene $5 \mathrm{a}(166 \mathrm{mg}, 1.6 \mathrm{mmol})$ in benzene (80 cm^{3}) was irradiated through a Pyrex filter with a 500 W highpressure mercury arc at room temperature in an atmosphere of nitrogen for 2 h . After evaporation of the solvent, the residue was subjected to PLC on silica gel (ethyl acetate-hexane, 1:3) to give $6 \mathbf{a}\left(58 \mathrm{mg}, 65 \%\right.$), m.p. $150-153{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ 3450,1765 and $1687 ; \delta(90 \mathrm{MHz}) 2.38\left(1 \mathrm{H}\right.$, ddd, $J_{2 \text {-endo-2-exo }}$ 14.72, $\left.J_{2-e n d o-1} 9.67, J_{2-\text { endo-2a }} 1.53,2-\mathrm{H}_{\text {endo } o}\right), 2.70(1 \mathrm{H}$, ddd, $\left.J_{2-\text { exo-2-endo }} 14.72, J_{2-\text { exo-2 a }} 7.69, J_{2-\text { exo-1 }} 3.74,2-\mathrm{H}_{\text {exo }}\right), 2.74(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J_{1-2 \text {-endo }} 9.67, J_{1-2 \text {-exo }} 3.74,1-\mathrm{H}\right), 3.89$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}-2 \text {-exo }} 7.69, J_{2 \mathrm{a}-2 \text {-endo }} 1.53,2 \mathrm{a}-\mathrm{H}\right)$ and $7.0-8.2(9 \mathrm{H}$, m, aromatic H$) ; m / z 278\left(\mathrm{M}^{+}, 36\right), 146\left[\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHPH}-\right.\right.$ $\left.\mathrm{CO})^{+}, 61\right], 104\left[\left(\mathrm{CH}_{2} \mathrm{CHPh}\right)^{+}, 100 \%\right.$] (Found: C, 77.82; H, $4.98 \% ; \mathrm{M}^{+}, 278.0943 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.68 ; \mathrm{H}, 5.07 \%$; $M, 278.0943$).
(\pm)-($1 \alpha, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-1,2,2 \mathrm{a}, 8 \mathrm{~b}-$ Tetrahydro-8b-hydroxy-1-(p-tol$y l) c y c l o b u t a[\mathrm{a}]$ naphthalene-3,4-dione $\mathbf{6 b}$.-Irradiation of \mathbf{a} benzene $\left(60 \mathrm{~cm}^{3}\right)$ solution of $1(126 \mathrm{mg}, 0.73 \mathrm{mmol})$ and p methylstyrene ($1.72 \mathrm{~g}, 14.6 \mathrm{mmol}$) for 2 h followed by separation by PLC in a similar manner as that mentioned above gave $\mathbf{6 b}$ ($120 \mathrm{mg}, 56 \%$) as an oil; $R_{\mathrm{f}} 0.42$ (ethyl acetate-hexane, $1: 3$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3440,1771$ and $1696 ; \delta(270 \mathrm{MHz}) 2.35(3 \mathrm{H}$, s , PhMe), 2.43 (1 H , ddd, $J_{\text {2-endo-2-exo }} 14.65$, $J_{2 \text {-endo-1 }} 1025$, $J_{\text {2-endo-2a }} 1.10,2-\mathrm{H}_{\text {endo }}$), $2.67\left(1 \mathrm{H}\right.$, ddd, $J_{2 \text {-exo-2-endo }} 14.65$, $\left.J_{2-\text { exo-2a }} 8.42, J_{2 \text {-exo-1 }} 3.66,2-\mathrm{H}_{\text {exo }}\right), 2.68(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.31(1 \mathrm{H}$, dd, $\left.J_{1-2 \text {-endo }} 10.25, J_{1-2 \text {-exo }} 3.66,1-\mathrm{H}\right), 3.89\left(1 \mathrm{H}\right.$, dd, $J_{2 \mathrm{a}-2-\text { exo }}$ $\left.8.42, J_{2 \mathrm{a}-2 \text {-endo }} 1.10,2 \mathrm{a}-\mathrm{H}\right), 6.99\left(2 \mathrm{H}, \mathrm{d}, J_{2^{\prime}-3^{\prime}}, J_{6^{\prime}-5^{\prime}} 8.06,2^{\prime}-, 6^{\prime}-\right.$ H), $7.19\left(2 \mathrm{H}, \mathrm{d}, J_{3^{\prime}-2^{\prime}}, J_{5^{\prime}-6} .8 .06,3^{\prime}-, 5^{\prime}-\mathrm{H}\right), 7.52\left(1 \mathrm{H}, \mathrm{td}, J_{6-5}\right.$, $\left.J_{6-7} 7.69, J_{6-8} 1.10,6-\mathrm{H}\right), 7.75\left(1 \mathrm{H}, \mathrm{td}, J_{7-6}, J_{7-8} 7.69, J_{7-5} 0.74\right.$, $7-\mathrm{H}), 7.92\left(1 \mathrm{H}, \mathrm{dd}, J_{8-7} 7.69, J_{8-6} 1.10,8-\mathrm{H}\right)$ and $8.10(1 \mathrm{H}$, dd, $\left.J_{5-6} \quad 7.69, \quad J_{5-7} \quad 1.10, \quad 5-\mathrm{H}\right) ; \quad m / z \quad 292\left(\mathrm{M}^{+}, 6.8\right), 118$ $\left[\left(\mathrm{CH}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)^{+}, \quad 100 \%\right.$] (Found: $\mathrm{M}^{+}, \quad 292.1093$. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $M, 292.1100$).
($\pm)-(1 \alpha, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-1-(4-$ Chlorophenyl $)-1,2,2 \mathrm{a}, 8 \mathrm{a}-$ tetrahydro-8a-hydroxycyclobuta[a]naphthalene-3,4-dione 6c.-The photoreaction of $1(260 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 4 -chlorostyrene $(4.88 \mathrm{~g}, 30$ mmol) in benzene ($75 \mathrm{~cm}^{3}$) for 3 h gave $\mathbf{6 c}(274 \mathrm{mg}, 58 \%$), m.p. 142-144 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,1774$ and 1676; $\delta(270 \mathrm{MHz}) 2.42\left(1 \mathrm{H}\right.$, ddd, $J_{\text {2-endo-2-exo }} 15.02, J_{\text {2-endo-1 }} 10.26$, $\left.J_{2-\text { endo-2a }} 1.10,2-\mathrm{H}_{2 \text {-endo }}\right), 3.89\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \text {-exo-2-endo }} 15.02, J_{2-\text { exo-2a }}\right.$ 8.06, $\left.J_{\text {2-exo-1 }} 3.66,2-\mathrm{H}_{\text {exo }}\right), 2.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.49(1 \mathrm{H}$, dd, $\left.J_{1-2 \text {-endo }} 10.26, J_{1-2 \text {-exo }} 3.66,1-\mathrm{H}\right), 2.89\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}-2 \text {-exo }} 8.06\right.$, $\left.J_{2 \mathrm{a}-2 \text {-endo }} 1.10,2 \mathrm{a}-\mathrm{H}\right), 7.05\left(2 \mathrm{H}, \mathrm{d}, J_{2^{\prime}-3^{\prime}}, J_{6^{\prime}-5^{\prime}} 8.43,2^{\prime}-, 6^{\prime}-\mathrm{H}\right), 7.33$ $\left(2 \mathrm{H}, \mathrm{d}, J_{3^{\prime}} 2^{\prime}, J_{5^{\prime}-6^{\prime}} 8.43,3^{\prime}-, 5^{\prime}-\mathrm{H}\right), 7.53\left(1 \mathrm{H}\right.$, ddd, $J_{6-5} 7.70, J_{6-7}$ $\left.7.33, J_{6-8} 1.10,6-\mathrm{H}\right), 7.75\left(1 \mathrm{H}\right.$, ddd, $J_{7-8} 8.06, J_{7-6} 7.33, J_{7-5}$ $1.47,7-\mathrm{H}), 7.91\left(1 \mathrm{H}, \mathrm{dd}, J_{8-7} 8.06, J_{8-6} 1.10,8-\mathrm{H}\right)$ and $8.10(1 \mathrm{H}$, dd, $\left.J_{5-6} 7.70, J_{5-7} 1.47,5-\mathrm{H}\right) ; m / z 314\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{+}, 2.6\right], 312$ $\left(\mathrm{M}^{+}, 6.7\right), \quad 140 \quad\left[\left(\mathrm{CH}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4}{ }^{37} \mathrm{Cl}\right)^{+}, 36\right]$ and 138 $\left[\left(\mathrm{CH}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4}{ }^{35} \mathrm{Cl}\right)^{+}, 100 \%\right.$] (Found: C, $68.80 ; \mathrm{H}, 4.16 ; \mathrm{Cl}$, $11.50 \% ; \mathrm{M}^{+}, 312.0557 . \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 69.12 ; \mathrm{H}, 4.19$; $\mathrm{Cl}, 11.34 \%$; $M, 312.0554$).
(土)-(1x,2ax,8bx)-1,2,2a,8b-Tetrahydro-8b-hydroxy-1-(4-methoxy'phenyl)cyclobuta[a]naphthalene-3,4-dione 6d.-The photoreaction of $1(173 \mathrm{mg}, 1 \mathrm{mmol})$ and 4-methoxystyrene $(2.68 \mathrm{~g}, 20 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ for 2.5 h gave $6 \mathrm{~d}(165 \mathrm{mg}$, 53%), m.p. $115-117^{\circ} \mathrm{C}$ (hexane- $\mathrm{Ch}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1} 3420$,

1765 and $1687 ; \delta(90 \mathrm{MHz}) 2.41\left(1 \mathrm{H}\right.$, ddd, $J_{2-\text { endo-2-exo }} 14.65$, $\left.J_{2-\text { endo-1 }} 10.26, J_{2-\text { endo-2a }} 1.10,2-\mathrm{H}_{\text {endo }}\right), 2.65(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {2-exo-2-endo }} 14.65, J_{2 \text {-exo-2a }} 8.43, J_{2-\text { exo-1 }} 3.662-\mathrm{H}_{\text {exo }}\right), 2.68(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 3.30\left(1 \mathrm{H}, \mathrm{dd}, J_{1-2 \text {-endo }} 10.26, J_{1-2 \text {-exo }} 3.66,1-\mathrm{H}\right), 3.87(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}-2 \text { eexo }} 8.43, J_{2 \mathrm{a}-2 \text {-endo }} 1.10,2 \mathrm{a}-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}-2^{\prime}}\right.$, $\left.J_{5^{\prime}-6^{\prime}} 8.79,3^{\prime}-, 5^{\prime}-\mathrm{H}\right), 7.03\left(2 \mathrm{H}, \mathrm{d}, J_{2^{\prime}-3^{\prime}}, J_{6^{\prime}-5^{\prime}} 8.79,2^{\prime}-, 6^{\prime}-\mathrm{H}\right)$ and 7.5-8.1 ($4 \mathrm{H}, \mathrm{m}, 5-, 6-, 7-, 8-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 308\left(\mathrm{M}^{+}, 9.8\right), 134$ $\left[\left(\mathrm{CH}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)^{+}\right.$, 100\%] (Found: M^{+}, 308.1036. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $M, 308.1049$).
(\pm)-1 $\alpha, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)$-1-(4-Cyanophenyl)-1,2,2a,8b-tetrahydro-8bhydroxycyclobuta $[\mathrm{a}]$ naphthalene-3,4-dione $\mathbf{6 e}$.-The photoreaction of $1(50 \mathrm{mg}, 0.29 \mathrm{mmol})$ and 4 -cyanostyrene $(188 \mathrm{mg}, 1.45$ mmol) in benzene $\left(20 \mathrm{~cm}^{3}\right)$ for 24 h gave $6 \mathrm{e}(43 \mathrm{mg}, 49 \%$), m.p. $212-216{ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1} 3450,2230,1765$ and 1699; $\delta(90 \mathrm{MHz}) 2.4-2.6(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.9(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.44$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1-2 \text {-endo }} 9.01, J_{1-2 \text {-exo }} 4.40,1-\mathrm{H}\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}-2 \text {-exo }}\right.$ $\left.7.03, J_{2 \mathrm{a}-2 \text {-endo }} 1.76,2 \mathrm{a}-\mathrm{H}\right), 7.20\left(2 \mathrm{H}, \mathrm{d}, J_{2^{\prime}-3^{\prime}, 6^{-s} \cdot} 7.25,2^{\prime}-, 6^{\prime}-\mathrm{H}\right)$, 7.4-7.9 $(5 \mathrm{H}, \mathrm{m})$ and $8.13\left(1 \mathrm{H}, \mathrm{d}, J_{5-6} 7.25,5-\mathrm{H}\right) ; m / z 303\left(\mathrm{M}^{+}\right.$, 81), $129\left[\left(\mathrm{CH}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CN}\right)^{+}, 100 \%\right]$ (Found: $\mathrm{M}^{+}, 303.0907$. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $M, 303.0895$).
(土)-(1 $\alpha, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-$ and $(\pm)-(1 \alpha, 2 \mathrm{a} \beta, 8 \mathrm{~b} \beta)-1,2,2 \mathrm{a}, 8 \mathrm{~b}-$ Tetra-hydro-8b-hydroxy-1-methyl-1-phenylcyclobuta[a]naphthalene3,4 -dione $\mathbf{6 f}$.-The photoreaction of $1(70 \mathrm{mg}, 0.40 \mathrm{mmol})$ and α-methylstyrene ($940 \mathrm{mg}, 8 \mathrm{mmol}$) in benzene ($70 \mathrm{~cm}^{3}$) for 2 h gave 6 f ($29 \mathrm{mg}, 23 \%$) and 2,3-dihydro-2-methyl-2-phenyl- 1 H benz[f]indole-4,9-dione $7(52 \mathrm{mg}, 45 \%$). For the spectral and analytical data of $\mathbf{6 f}$ and 7 , see ref. 3 .
(\pm)-($1 \alpha, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-1,2,2 \mathrm{a}, 8 \mathrm{~b}-$ Tetrahydro-8b-hydroxy-1-(2-pyri-dyl)cyclobuta[a]naphthalene-3,4-dione 6 g .-The photoreaction of $1(260 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 2-vinylpyridine ($3.15 \mathrm{~g}, 30 \mathrm{mmol}$) in benzene ($75 \mathrm{~cm}^{3}$) for 5 h gave $6 \mathrm{~g}(270 \mathrm{mg}, 64 \%)$, m.p. $150-152^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $v_{\max } / \mathrm{cm}^{-1} \quad 3400-2600,1774$ and 1688 ; $\delta(90 \mathrm{MHz}) 2.28\left(1 \mathrm{H}\right.$, ddd, $J_{2 \text {-endo-2-exo }} 14.06, J_{2-\text { endo-1 }} 9.88$, $J_{2-\text { endo-2a }} 1.32,2-\mathrm{H}_{\text {endo }}$), $2.73\left(1 \mathrm{H}\right.$, ddd, $J_{2 \text {-exo-2-endo }} 14.06$, $\left.J_{2-\text { exo-2a }} 8.13, J_{2 \text {-exo- }} 3.52,2-\mathrm{H}_{\text {exo }}\right), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J_{1-2 \text { endo }} 9.88\right.$, $\left.J_{1-2 \text { exo }} 3.52,1-\mathrm{H}\right), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}-2 \text {-exo }} 8.13, J_{2 \mathrm{a}-2 \text {-endo }} 1.32\right.$, $2 \mathrm{a}-\mathrm{H}), 4.1(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.0-7.2(2 \mathrm{H}, \mathrm{m}), 7.4-8.1(5 \mathrm{H}, \mathrm{m})$ and $8.5-$ $8.6(1 \mathrm{H}, \mathrm{m}) ; m / z 279\left(\mathrm{M}^{+}, 4.5\right)$ and $251(100 \%)$ (Found: M^{+}, 279.0911. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $M, 279.0895$).
(\pm)-($1 \alpha, 2 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-1,2,2 \mathrm{a}, 8 \mathrm{~b}-$ Tetrahydro-8b-hydroxy-1-(4-pyri$d y l)$ cyclobuta[a]naphthalene-3,4-dione 6 h .-The photoreaction of $1(242 \mathrm{mg}, 1.4 \mathrm{mmol})$ and 4-vinylpyridine ($736 \mathrm{mg}, 7 \mathrm{mmol}$) in benzene $\left(70 \mathrm{~cm}^{3}\right)$ for 20 h gave $6 \mathrm{~h}(95 \mathrm{mg}, 24 \%)$, m.p. $180-184^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} \quad 3600-2500,1774$ and 1688 ; $\delta(90 \mathrm{MHz}) 2.0-2.8(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and OH$), 3.33(1 \mathrm{H}$, dd, $\left.J_{1-2 \text {-endo }} 9.45, J_{1-2 \text {-exo }} 3.74,1-\mathrm{H}\right), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}-2 \text {-exo }} 7.47\right.$, $\left.J_{2 \mathrm{a}-2 \text {-endo }} 1.98,2 \mathrm{a}-\mathrm{H}\right), 7.01\left(2 \mathrm{H}, \mathrm{d}, J_{2^{\prime}-3^{\prime}}, J_{6^{\prime}-5^{\prime}} 6.16,2^{\prime}-, 6^{\prime}-\mathrm{H}\right)$, $7.4-8.2(4 \mathrm{H}, \mathrm{m}, 5-, 6-, 7-, 8-\mathrm{H})$ and $8.51\left(2 \mathrm{H}, \mathrm{d}, J_{3^{\prime}-2^{\prime}}, J_{5^{\prime}-6}, 6.16\right.$, $\left.3^{\prime}-, 5^{\prime}-\mathrm{H}\right) ; m / z 279\left(\mathrm{M}^{+}, 71\right)$ and $105\left[\left(\mathrm{PyCHCH}_{2}\right)^{+}, 100 \%\right]$ (Found: $\mathrm{M}^{+}, 279.0879 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $M, 279.0895$).

2,3-Dihydro-2-phenylnaphtho[1,2-b] furan-4,9-dione 9a.-A solution of $\mathbf{6 a}(27 \mathrm{mg}, 0.097 \mathrm{mmol})$ in benzene $\left(20 \mathrm{~cm}^{3}\right)$ containing mercury(II) oxide ($65 \mathrm{mg}, 0.30 \mathrm{mmol}$) and iodine (76 $\mathrm{mg}, 0.30 \mathrm{mmol}$) was irriadiated for 4 h with a 100 W highpressure mercury arc through a Pyrex filter while being stirred under nitrogen. The resulting mixture was filtered through a Celite pad; the filtrate was first washed with aq. sodium thiosulfate and then with brine. After the solution was dried over anhydrous magnesium sulfate, the solvent was evaporated to give crude products, which were purified by PLC on silica gel (ethyl acetate-hexane, $1: 3$) to afford $\mathbf{8 a}\left(7.5 \mathrm{mg}, 28 \%\right.$) and $9 \mathbf{a}^{6}$ ($12 \mathrm{mg}, 45 \%$). Compound $8 \mathbf{a}$, m.p. $162-164{ }^{\circ} \mathrm{C}$ (hexane);
$v_{\text {max }} / \mathrm{cm}^{-1} 1700,1652,1620,1591$ and $1573 ; \delta(90 \mathrm{MHz}) 3.05$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3-3} 15.60, J_{3-2} 8.13,3-\mathrm{H}\right), 3.62\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}-3} 15.60\right.$, $\left.J_{3^{\prime}-2} 10.11,3-\mathrm{H}^{\prime}\right), 6.06\left(1 \mathrm{H}, \mathrm{dd}, J_{2-3^{\prime}} \cdot 10.11, J_{2-3} 8.13,2-\mathrm{H}\right), 7.41$ $(5 \mathrm{H}, \mathrm{s}), 7.55-7.7(3 \mathrm{H}, \mathrm{m})$ and $8.05-8.2(1 \mathrm{H}, \mathrm{m}) ; m / z 276\left(\mathrm{M}^{+}\right.$, 31) and $104(100 \%)$ (Found: $\mathrm{M}^{+}, 276.0797 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $M, 276.0786$).

2,3-Dihydro-2-(p-tolyl)naphtho[1,2-b]furan-4,5-dione 8b and 2,3-Dihydro-2-(p-tolyl)naphtho[2,3-b] furan-4,9-dione 9b.-Irradiation of $\mathbf{6 b}(33 \mathrm{mg}, 0.11 \mathrm{mmol})$ in the presence of mercury(II) oxide ($73 \mathrm{mg}, 0.33 \mathrm{mmol}$) and iodine ($86 \mathrm{mg}, 0.33 \mathrm{mmol}$) in benzene ($30 \mathrm{~cm}^{3}$) for 4 h followed by the work-up described above gave $8 \mathrm{bb}(8.3 \mathrm{mg}, 26 \%$) and 9 b ($8.3 \mathrm{mg}, 26 \%$). Compound 8b, m.p. $145-146^{\circ} \mathrm{C}$ (diethyl ether-hexane); $v_{\max } / \mathrm{cm}^{-1} 1698$, 1651, 1620, 1590 and $1572 ; \delta(90 \mathrm{MHz}) 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.10$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3-3^{\prime}} 15.60, J_{3-2} 8.13,3-\mathrm{H}\right), 3.52\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}-3} 15.60\right.$, $J_{3-2} 10.33,3-\mathrm{H}$), $5.95\left(1 \mathrm{H}, \mathrm{dd}, J_{2-3} \cdot 10.33, J_{2-3} 8.13,2-\mathrm{H}\right.$), 7.19 $(4 \mathrm{H}, \mathrm{s}), 7.5-7.7(3 \mathrm{H}, \mathrm{m})$ and $8.0-8.2(1 \mathrm{H}, \mathrm{m}) ; m / z 290\left(\mathrm{M}^{+}, 43\right)$ and $118\left[\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHCH}_{2}\right)^{+}, 100 \%\right]$ (Found: $\mathrm{M}^{+}, 290.0929$. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 290.0943$).

Compound 9b, m.p. $132-134{ }^{\circ} \mathrm{C}$ (diethyl ether-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1681,1650,1627,1596$ and $1573 ; \delta(90 \mathrm{MHz}) 2.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.23 ($1 \mathrm{H}, \mathrm{dd}, J_{3-2} 17.36, J_{3^{\prime}-3} 8.79,3-\mathrm{H}$), $3.65(1 \mathrm{H}$, $\left.J_{3^{\prime}-3} 17.36, J_{3-2} 10.55,3-\mathrm{H}^{\prime}\right), 5.96\left(1 \mathrm{H}\right.$, dd, $J_{2-3} \cdot 10.55, J_{2-3} 8.79$, $2-\mathrm{H}), 7.0-7.3(4 \mathrm{H}, \mathrm{m}), 7.5-7.8(2 \mathrm{H}, \mathrm{m})$ and $7.9-8.1(2 \mathrm{H}, \mathrm{m}) ; m / z$ $290\left(\mathrm{M}^{+}, 46\right)$ and $118\left[\left(\mathrm{MePhCHCH}_{2}\right)^{+}, 100 \%\right.$] (Found: M^{+}, 290.0957. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 290.0943$).

2-(4-Chlorophenyl)-2,3-dihydronaphtho [1,2-b] furan-4,5-dione 8c and 2-(4-Chlorophenyl)-2,3-dihydronaphtho [3,2-b] furan4,9 -dione 9 c .-The photolysis of $6 \mathrm{c}(155 \mathrm{mg}, 0.50 \mathrm{mmol})$ in benzene ($25 \mathrm{~cm}^{3}$) containing mercury(II) oxide ($325 \mathrm{mg}, 1.5$ mmol) and iodine ($381 \mathrm{mg}, 1.5 \mathrm{mmol}$) for 1.5 h gave $8 \mathrm{c}(45 \mathrm{mg}$, 29%) and 9c ($14 \mathrm{mg}, 9 \%$. Compound 8c, m.p. $159-161^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1701,1658,1625,1590$ and 1574 ; $\delta(90 \mathrm{MHz}) 3.13\left(1 \mathrm{H}, \mathrm{dd}, J_{3-3^{\prime}} \cdot 15.60, J_{3-2} 8.13,3-\mathrm{H}\right), 3.62(1 \mathrm{H}$, dd, $\left.J_{3^{\prime}-3} 15.60, J_{3^{\prime}-2} 10.33,3-\mathrm{H}^{\prime}\right), 6.03\left(1 \mathrm{H}, \mathrm{dd}, J_{2-3} 10.33, J_{2-3^{\prime}}\right.$ 8.13, 2-H) and 7.15-8.2 ($8 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z 310\left(\mathrm{M}^{+}, 34\right)$ and $138\left[\left(\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHCH}_{2}\right)^{+}, 100 \%\right]$ (Found: C, $69.91 ; \mathrm{H}$, $3.61 \% ; \mathrm{M}^{+}, 310.0407 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 69.58 ; \mathrm{H}, 3.58 \%$; $M, 310.0397$.
Compound 9c, m.p. $\quad 153-157^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1676,1647,1640,1595$ and $1575 ; \delta(90 \mathrm{MHz}) 3.29$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3-3} \cdot 17.36, J_{3-2} 8.57,3-\mathrm{H}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}-3} 17.36\right.$, $\left.J_{3^{\prime}-2} 10.76,3-\mathrm{H}^{\prime}\right), 5.96\left(1 \mathrm{H}, \mathrm{dd}, J_{2-3} .10 .76, J_{2-3} 8.57,2-\mathrm{H}\right.$), $7.2-$ $7.8(6 \mathrm{H}, \mathrm{m})$ and $7.9-8.15(2 \mathrm{H}, \mathrm{m}, 5-, 8-\mathrm{H}) ; m / z 310\left(\mathrm{M}^{+}, 100 \%\right)$ (Found: $\mathrm{M}^{+}, 310.0388 . \mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClO}_{3}$ requires $M, 310.0397$).

2,3-Dihydro-2-(4-methoxyphenyl)naphtho[1,2-b] furan-4,5-dione 8d and 2,3-Dihydro-2-(4-methoxyphenyl)naphtho[2,3-b]-furan-4,9-dione 9d.-The photoreaction of $\mathbf{6 d}(100 \mathrm{mg}, 0.32$ mmol) in benzene ($20 \mathrm{~cm}^{3}$) containing mercury(II) oxide (208 $\mathrm{mg}, 0.96 \mathrm{mmol}$) and iodine ($244 \mathrm{mg}, 0.96 \mathrm{mmol}$) was carried out for 2 h , followed by recrystallization from hexane-diethyl ether to give 8d ($68 \mathrm{mg}, 70 \%$), m.p. $127-130^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1697$, $1650,1617,1590$ and $1571 ; \delta(90 \mathrm{MHz}) 3.17\left(1 \mathrm{H}, \mathrm{dd}, J_{3-3}\right.$. $15.83, J_{3-2} 8.14,3-\mathrm{H}$), 3.57 ($1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}-3} 15.83$, $J_{3^{\prime}-2} 10.10,3-\mathrm{H}^{\prime}$), $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.00\left(1 \mathrm{H}, \mathrm{dd}, J_{2-3} \cdot 10.10, J_{2-3} 8.14,2-\mathrm{H}\right)$, 6.8-7.1 ($2 \mathrm{H}, \mathrm{m}$) $7.2-7.8(4 \mathrm{H}, \mathrm{m})$ and 7.9-8.2 $(2 \mathrm{H}, \mathrm{m}) ; m / z 306$ $\left(\mathrm{M}^{+}, 76\right), 134\left[\left(\mathrm{MeOPhCHCH}_{2}\right)^{+}, 100 \%\right]$ (Found: M^{+}, 306.0886. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $M, 306.0892$).

Isolation by PLC on silica gel (ethyl acetate-hexane, 1:3) afforded exclusively $9 \mathrm{~d}\left(78 \mathrm{mg}, 80 \%\right.$), m.p. $112-115^{\circ} \mathrm{C}$ (hexanediethyl ether); $v_{\text {max }} / \mathrm{cm}^{-1} 1683,1651,1627,1596$ and 1574; $\delta(90 \mathrm{MHz}) 3.24\left(1 \mathrm{H}, \mathrm{dd}, J_{3-3} .17 .14, J_{3-2} 9.23,3-\mathrm{H}\right), 3.64(1 \mathrm{H}$, dd, $\left.J_{3^{\prime}-3} 17.14, J_{3^{\prime}-2} 10.33,3-\mathrm{H}^{\prime}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.95(1 \mathrm{H}$, dd, $\left.J_{2-3^{\prime}} 10.33, J_{2-3} 9.23,2-\mathrm{H}\right), 6.91\left(2 \mathrm{H}, \mathrm{d}, J_{3^{\prime}-2^{\prime}} J_{5^{\prime}-6^{\prime}} 8.80,3^{\prime}-\right.$, $\left.5^{\prime}-\mathrm{H}\right), 7.33\left(2 \mathrm{H}, \mathrm{d}, J_{2^{\prime}-3^{\prime}}, J_{6^{-}-5^{\prime}} 8.80,2^{\prime}-, 6^{\prime}-\mathrm{H}\right), 7.55-7.85(2 \mathrm{H}, \mathrm{m}$,

6-, 7-H) and 8.0-8.15 ($2 \mathrm{H}, \mathrm{m}, 5-, 8-\mathrm{H}) ; m / z 306\left(\mathrm{M}^{+}, 17\right)$ and 134 [($\left.\mathrm{MeOPhCHCH}_{2}\right)^{+}, 100 \%$] (Found: C, 75.87 ; H, 3.83; N, $4.69 \% ; \mathrm{M}^{+}$, 306.0867. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.74 ; \mathrm{H}, 3.68$; $\mathrm{N}, 4.65 \% ; M, 306.0892$).

2-(4-Cyanophenyl)-2,3-dihydronaphtho[,2,3-b] furan-4,9-dione 9 e .-The photoreaction of $6 \mathrm{e}(20 \mathrm{mg}, 0.066 \mathrm{mmol})$ in benzene ($5 \mathrm{~cm}^{3}$) containing mercury(II) oxide ($39 \mathrm{mg}, 0.18$ mmol) and iodine ($46 \mathrm{mg}, 0.18 \mathrm{mmol}$) for 3 h gave $9 \mathrm{l}(7.9 \mathrm{mg}$, 40%), m.p. $222-225^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1} 2224$, $1673,1651,1635,1595$ and $1571 ; \delta(90 \mathrm{MHz}) 3.10\left(1 \mathrm{H}, \mathrm{dd}, J_{3}\right.$ $\left.{ }_{3} .17 .14, J_{3-2} 8.57,3-\mathrm{H}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{-3}} 17.14, J_{3^{\prime}-2} 10.98\right.$, $\left.3-\mathrm{H}^{\prime}\right), 5.98\left(1 \mathrm{H}, \mathrm{dd}, J_{2-3^{\prime}} \cdot 10.98, J_{2-3} 8.57,2-\mathrm{H}\right), 7.2-7.7(6 \mathrm{H}, \mathrm{m})$ and 7.8-8.1 ($2 \mathrm{H}, \mathrm{m}$); m/z $301\left(\mathrm{M}^{+}, 100 \%\right)$ (Found: M^{+}, 301.0723. $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires $M, 301.0739$).

2,3-Dihydro-2-methyl-2-phenylnaphtho[1,2-b] furan-4,5-dione 8f and 2,3-Dihydro-2-methyl-2-phenylnaphtho [2,3-b] furan4,9 -dione 9 .-The photoreaction of $\mathbf{6 f}(79 \mathrm{mg}, 0.27 \mathrm{mmol})$ in the presence of mercury(II) oxide ($175 \mathrm{mg}, 0.81 \mathrm{mmol}$) and iodine ($208 \mathrm{mg}, 0.81 \mathrm{mmol}$) in benzene $\left(50 \mathrm{~cm}^{3}\right.$) for 3.5 h gave $8 \mathrm{f}(6.3$ $\mathrm{mg}, 8 \%$) and $9 \mathrm{f}\left(18 \mathrm{mg}, 23 \%\right.$). Compound 8 f, m.p. $120-122^{\circ} \mathrm{C}$ (hexane-diethyl ether); $v_{\text {max }} / \mathrm{cm}^{-1} 1700,1652,1591$ and 1573; $\delta(90 \mathrm{MHz}) 1.90(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 3.17\left(1 \mathrm{H}, \mathrm{d}, J_{3-3} \cdot 16.25,3-\mathrm{H}\right)$, $3.52\left(1 \mathrm{H}, \mathrm{d}, J_{3^{-}-3} 16.25,3-\mathrm{H}^{\prime}\right), 7.1-8.1(9 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 290\left(\mathrm{M}^{+}\right.$, $10)$ and $118\left[\left(\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{Ph}\right)^{+}, 100 \%\right]$ (Found: $\mathrm{M}^{+}, 290.0932$. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 290.0943$). Compound 9f, m.p. 112$114{ }^{\circ} \mathrm{C}$ (hexane); $v_{\max } / \mathrm{cm}^{-1} 1683,1648,1628,1594$ and 1573 ; $\delta(90 \mathrm{MHz}) 2.04(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 3.22\left(1 \mathrm{H}, \mathrm{d}, J_{3-3} \cdot 16.88,3-\mathrm{H}\right)$, 3.62 ($1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}-3} 16.88,3-\mathrm{H}^{\prime}$), $7.15-7.45(5 \mathrm{H}, \mathrm{m}), 7.5-7.7(2 \mathrm{H}$, $\mathrm{m})$ and $7.9-8.15(2 \mathrm{H}, \mathrm{m}, 5-, 8-\mathrm{H}) ; m / z 290\left(\mathrm{M}^{+}, 47\right)$ and 118 $\left[\left(\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{Ph}\right)^{+}, 100 \%\right]$ (Found: $\mathrm{M}^{+}, 290.0954 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 290.0943$).

References

1 Part 126. H. Suginome, H. Takemura, N. Shimoyama and K. Orito, J Chem. Soc. Perkin Trans. 1, 1991, 2721.
2 For reviews of enone photochemical cycloaddition, see (a) S. W. Baldwin in Organic Photochemistry, ed. A. Padwa, Marcel Dekker, New York, 1981, vol. 5, p. 123; (b) A. C. Weedon in Synthetic Organic Photochemistry, ed. W. M. Horspool, Plenum, New York, 1980, p. 91.
3 K. Kobayashi, H. Takeuchi, S. Seko and H. Suginome, Helv. Chim. Acta, 1991, 24, 1091.
4 I. Singh, R. T. Ogata, R. E. Moore, C. W. J. Chang and P. Scheuer, Tetrahedron, 1968, 24, 6053.
5 Inter alia: (a) H. Suginome and S. Yamada, J. Org. Chem., 1984, 49, 3753; (b) H. Suginome, C. F. Liu, M. Tokuda and A. Furusaki, J. Chem. Soc., Perkin Trans. 1, 1985, 327; (c) H. Suginome and S Yamada, J. Org. Chem., 1985, 50, 2489; (d) H. Suginome, K. Kobayashi, M. Itoh and A. Furusaki, Chem. Lett., 1985, 727; (e) H Suginome, Y. Seki, S. Yamada, K. Orito and N. Miyaura, J. Chem. Soc., Perkin Trans. 1, 1985, 1431; (f) H. Suginome and S. Yamada, Synthesis, 1986, 741; (g) H. Suginome, H. Washiyama and S. Yamada, Bull. Chem. Soc. Jpn., 1987, 60, 1071; (h) H. Suginome, J. B. Wang and S. Yamada, Chem. Lett., 1987, 783; (i) H. Suginome, M. Itoh and K. Kobayashi, J. Chem. Soc., Perkin Trans. 1, 1988, 491; (j) H. Suginome and S. Yamada, Tetrahedron, 1987, 43, 3371; (k) H. Suginome and S. Yamada, Bull. Chem. Soc. Jpn., 1987, 60, 2453; (l) H. Suginome and S. Yamada, Tetrahedron Lett., 1987, 28, 3963; (m) H. Suginome, M. Itoh and K. Kobayashi, Chem. Lett., 1987, 1527; (n) H. Suginome and S. Yamada, Chem. Lett., 1988, 245; (o) H. Suginome, C. F. Liu, S. Seko, K. Kobayashi and A. Furusaki, J. Org. Chem., 1988, 53, 5952; (p) H. Suginome, Y. Yamamoto and K. Orito, J. Chem. Soc., Perkin Trans. I, 1990, 1033; (q) H. Suginome, S. Yamada and J. B. Wang, J. Org. Chem., 1990, 55, 2170; (r) H. Suginome, K. Kobayashi, M. Itoh, S. Seko and A. Furusaki, J. Org. Chem., 1990, 55, 4933; (s) H. Suginome and J. B. Wang, Steroids, 1990, 55, 353; (t) H. Suginome, H. Senboku and S. Yamada, J. Chem. Soc., Perkin Trans. I, 1990, 2199; (u) K. Kobayashi, H. Shimizu, M. Itoh and H. Suginome, Bull. Chem. Soc. Jpn., 1990, 63, 2435; (v) K. Kobayashi, M. Itoh, A. Sasaki and H. Suginome, Tetrahedron, 1991, 47, 5437; (w) K. Kobayashi, A. Sasaki, Y. Kanno and H. Suginome, Tetrahedron, 1991, 47, 7245; (x) K. Orito, K. Yorita and H. Suginome, Tetrahedron Lett., 1991, 42, 5999.

6 K. Kobayashi, H. Shimizu, A. Sasaki and H. Suginome, J. Org. Chem., 1991, 56, 3204.
7 V. Guay and P. Brassard, J. Org. Chem., 1984, 49, 1853.
8 Inter alia: E. J. Corey, K. B. Becker and R. K. Varma, J. Am. Chem Soc., 1972, 94, 8616; R. J. J. Visser, A. Vos and J. B. F. N. Engberts, J. Chem. Soc., Perkin Trans. 2, 1978, 634; A. J. Hatchison and Y. Kishi, J. Am. Chem. Soc., 1979, 101, 6786; F. M. E. Tork, A. P. Zens and J. Jacobs, J. Org. Chem., 1985, 50, 1313; N. Kunieda, H. Endo, M. Hirota, Y. Kodama and M. Nishio, Bull. Chem. Soc. Jpn., 1983. 56, 3110.

9 For reviews on $\mathrm{OH}-\pi$ hydrogen bond, see (a) H. S. Aaron, in Topics in Stereochemistry, vol. 11, Wiley, New York, p. 10, ed. N. Allinger and E. L. Eliel, 1979; (b) M. Tichy, in Advances in Organic Chem., Methods and Results, vol. 5, eds. R. A. Raphael, E. C. Taylor and H. Wynberg, Interscience, London, 1965, p. 157.

Paper 1/03639D
Received 17th July 1991
Accepted 11 th September 1991

